Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
ERS Monograph ; 2023(99):68-79, 2023.
Article in English | EMBASE | ID: covidwho-20243330

ABSTRACT

Housing quality and affordability are well established as social determinants of health through direct and indirect mechanisms. Respiratory illnesses related to housing are nearly all the result of housing disrepair that allows intrusion into the home of environmental agents that are directly or indirectly associated with disease. Structural deficiencies such as leaks, cracks in the foundation or holes in the home's exterior can facilitate the presence of mould, which is causally linked to the development of asthma and is associated with exacerbation of asthma symptoms in children and adults. Indoor cleanliness can also contribute to the presence of mice and cockroaches. Proper ventilation can improve air quality, reducing exposure to PM, VOCs and infectious respiratory agents. Disparities in exposure to the housing conditions associated with respiratory disease are readily apparent across socioeconomic lines. Low-income families are less likely to be able to afford the costs of maintaining a home, which prevents them from making repairs that could improve respiratory health.Copyright © ERS 2023.

2.
Journal of Physics: Conference Series ; 2515(1):012010, 2023.
Article in English | ProQuest Central | ID: covidwho-20232540

ABSTRACT

This exploratory study evaluated the risk of contagion from airborne diseases, such as coronaviruses, in schools. For three days, the concentration of carbon dioxide in two university classrooms was monitored for 90 minutes, while the students took their math classes. We use these values to validate a first-order model for carbon dioxide concentration and calculate the air exchange rate indirectly (avoiding the need for expensive measurement equipment). The air exchange rate obtained allowed us to assess whether the usual ventilation systems (both natural and mechanical) are sufficient to guarantee a low risk of contagion of aerosols due to respiration. The results show that the risk of contagion is low if three factors are considered: the level of conversation within the classroom, the usage of a moisture extraction system, and the lecture duration. The risk is low if the lecture time is less than 50 minutes, the level of conversation is moderate, and a moisture extraction system is available. If these conditions are not met the risk is considerably higher even if mechanical ventilation is employed.

3.
Journal of the Textile Institute ; 2023.
Article in English | Scopus | ID: covidwho-2320876

ABSTRACT

The global COVID-19 pandemic has triggered a huge demand for the protective nonwovens. However, the main raw material of nonwovens comes from petroleum, and the massive consumption of petroleum-based polymers brings great pressure to ecosystem. Therefore, it is significant to develop biodegradable protective barrier products. In this work, a polylactic-based composite (a tri-layer nonwovens composed of spunbond, meltblown and spunbond, SMS) was prepared and applied for protective apparel. The surface morphology and chemical changes of the fibers were characterized and analyzed by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and energy dispersive spectroscopy (EDS). The liquid contact angle and permeability, breathability and moisture permeability, frictional charge and mechanical strength of the samples were evaluated and compared. The samples degradability was also recorded. The results demonstrate that the optimum formula for anti-fouling treatment on SMS is F-30. The treated fabric possesses superior liquid repellency and anti-permeability, with contact angles of water and alcohol at 128° and 115° respectively, while the alcohol repellent grade reaches level 7. The treated sample has less strength loss but exhibits favorable breathability, moisture permeability and anti-static properties, which can meet the requirements of protective apparels. After fluorine resin coating, the composite still provide excellent degradation performance, and the weight loss rate reaches more than 80% after 10 days water degradation. These results provide new insights for the application of PLA-based SMS in biodegradable protective apparel. © 2023 The Textile Institute.

4.
Journal of Hydrology and Hydromechanics ; 71(2):156-168, 2023.
Article in English | ProQuest Central | ID: covidwho-2320327

ABSTRACT

The root tuber of Pinellia ternata has been used as a traditional therapeutic herbal medicine. It is reported to impart beneficial attributes in recovering COVID-19 patients. To meet an increasing demand of P. ternata, this study is intended to investigate the effects of biochar on the soil hydrological and agronomic properties of two decomposed soils (i.e., completely decomposed granite (CDG) and lateritic soil) for the growth of P. ternata. The plant was grown in instrumented pots with different biochar application rate (0%, 3% and 5%) for a period of three months. Peanut shell biochar inclusion in both soils resulted in reduction of soil hydraulic conductivity and increase in soil water retention capacity. These alterations in hydrological properties were attributed to measured change in total porosity, biochar intra pore and hydrophilic functional groups. The macro-nutrient (i.e., N, P, K, Ca, and Mg) concentration of both soils increased substantially, while the pH and cation exchange capacity levels in the amended soils were altered to facilitate optimum growth of P. ternata. The tuber biomass in biochar amended CDG at all amendment rate increases by up to 70%. In case of lateritic soil, the tuber biomass increased by 23% at only 5% biochar application rate. All treatments satisfied the minimum succinic acid concentration required as per pharmacopoeia standard index. The lower tuber biomass exhibits a higher succinic acid concentration regardless of the soil type used to grow P. ternata. The biochar improved the yield and quality of P. ternata in both soils.

5.
Biofuels ; 13(6):763-770, 2022.
Article in English | CAB Abstracts | ID: covidwho-2315549

ABSTRACT

A few industries, such as the beverage industry, have experienced some growth in sales during the COVID-19 pandemic. Globally, beverage companies alone generate over 200 million tonnes of biomass annually, which largely ends up as animal feed or in landfills. With the UK government's commitment to reduce its carbon footprint by at least 68% in 2030, many companies, especially small and medium enterprises (SMEs), are exploring options to reduce carbon emissions and develop roadmaps to become carbon neutral. It has thus become imperative for beverage companies to find value in or repurpose their waste. This paper unlocks the potential for improving the fuel properties of beverage waste through a blending process and explores the determination of optimal fractions for the blends via characterization. With an initial moisture content of 82 and 58 wt.% brewery spent grain (BSG) and spent coffee grounds (SCG), respectively, the pre-treatment process reduced moisture content by approximately 10-15 wt.%. The study concludes that biomass blending improved the fuel properties of the biomass, providing a competitive comparison with coal for energy applications.

6.
Applied Sciences ; 13(9):5300, 2023.
Article in English | ProQuest Central | ID: covidwho-2313532

ABSTRACT

The moisture levels in sausages that were stored for 16 days and added with different concentrations of orange extracts to a modification solution were assessed using response surface methodology (RSM). Among the 32 treatment matrixes, treatment 10 presented a higher moisture content than that of treatment 19. Spectral pre-treatments were employed to enhance the model's robustness. The raw and pre-processed spectral data, as well as moisture content, were fitted to a regression model. The RSM outcomes showed that the interactive effects of [soy lecithin concentration] × [soy oil concentration] and [soy oil concentration] × [orange extract addition] on moisture were significant (p < 0.05), resulting in an R2 value of 78.28% derived from a second-order polynomial model. Hesperidin was identified as the primary component of the orange extracts using high-performance liquid chromatography (HPLC). The PLSR model developed from reflectance data after normalization and 1st derivation pre-treatment showed a higher coefficient of determination in the calibration set (0.7157) than the untreated data (0.2602). Furthermore, the selection of nine key wavelengths (405, 445, 425, 455, 585, 630, 1000, 1075, and 1095 nm) could render the model simpler and allow for easy industrial applications.

7.
Indian Drugs ; 59(12):55-69, 2022.
Article in English | EMBASE | ID: covidwho-2289722

ABSTRACT

Molnupiravir, a broad-spectrum antiviral is an isopropyl ester prodrug of beta-D-N4-hydroxycytidine. Molnupiravir targets RNA-dependent RNA-polymerase enzyme of the viruses. A new stability-indicating HPLC-method was developed to determine related substances and assay of molnupiravir. Separation was achieved by using Shim-pack GWS C18 column. The method was validated according to current ICH requirements. The calibration plot gave a linear relationship for all known analytes over the concentration range from LOQ to 200%. LOD and LOQ for all known analytes were found in 0.05-0.08 microg mL-1 and 0.12-0.20 microg mL-1, respectively, the mean recovery was found to be 97.79-102.44 %. Study showed that the method, results of robustness, solution stability studies are precise and within the acceptable limits. Molnupiravir was found to degrade in acid, alkali, and oxidative conditions, and was stable in thermal, moisture, and photolytic degradation condition. The method is simple, accurate, precise, and reproducible for routine purity analysis of drug-samples.Copyright © 2022 Indian Drug Manufacturers' Association. All rights reserved.

8.
Energies ; 16(7):3235, 2023.
Article in English | ProQuest Central | ID: covidwho-2292264

ABSTRACT

Biodrying is an essential part of the mechanical–biological treatment process that minimizes moisture content and simultaneously maximizes heating value for refuse-derived fuel (RDF) production. Although the mechanical separation process operates effectively in Thailand's RDF production, high organic content levels and their degradation cause moisture contamination in RDF, producing wet RDF. Aeration is essential for an effective biodrying process, and can reduce RDF's moisture content as well as increase its heating value. To maximize the biodrying effect, aeration should be optimized based on the waste conditions. This study proposes a modified aeration-supplied configuration for wet RDF biodrying. The aeration rate was modified based on the period within the biodrying operation;the first period is from the beginning until day 2.5, and the second period is from day 2.5 to day 5. The optimal aeration supply configuration was 0.5 m3/kg/day in the first period and then 0.3 m3/kg/day until the end of the process;this configuration yielded the greatest moisture content decrease of 35% and increased the low heating value of the biodried product by 11%. The final moisture content and low heating value were 24.07% and 4787 kcal/kg, respectively. Therefore, this optimal aeration-supplied configuration could be applied to meet the moisture content and low heating value requirements of the RDF production standard for Thailand's local cement industry.

9.
Journal of the Indian Society of Remote Sensing ; 51(3):439-452, 2023.
Article in English | ProQuest Central | ID: covidwho-2290720

ABSTRACT

The COVID-19 pandemic has negatively impacted the industrial, financial, and social aspects of our daily life due to the implementation of lockdown to protect against the spread of the virus. In addition, the lockdown deduced by COVID-19 has promising positive impacts on air quality and environmental pollution. This study aims to monitor the effects of lockdown on environmental degradation during the pandemic in Kabul city, the capital of Afghanistan, using geospatial data and a statistical model of the Analytical Hierarchy Process (AHP). To achieve the purpose of the study, the most essential influencing factors on air quality were generated from different sources using Google Earth Engine (GEE) and GIS environment;Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Normalized Difference Moisture Index NDMI) were calculated using Sentinel-2MSI, Carbon Monoxide (CO) was obtained from Sentinel-5P TROPOMI, and land surface temperature was retrieved from MODIS data. The generated thematic layers (before COVID-19, and during a lockdown of COVID-19) were weighted and rated using the AHP analysis. The weighted layers were spatially overlayed to obtain the final output. Consequently, the environmental quality degradation maps before and during COVID-19 were generated to assess the differences over the 22 districts of Kabul city. The findings of the study show that Kabul city is covered by the very low, low, moderate, high, and very high degradation of the environment by 3.17%, 5.33%, 20.54%, 26.63%, 44.32% before COVID-19 in 201,9 respectively, while the percentages are changed to 4.37%, 8.99%. 16.55%, 37.47%, and 32.62% during the lockdown caused by COVID-19 in 2020. The changes in the percentage of environmental degradation in Kabul city particularly in high and very high zones confirm the positive impact of the lockdown of COVID-19.

10.
Erdkunde ; 76(3):199-226, 2022.
Article in English | CAB Abstracts | ID: covidwho-2294340

ABSTRACT

Arctic-alpine ecosystems are considered hot-spots of environmental change, with rapidly warming conditions causing massive alterations in vegetational structure. These changes and their environmental controls are highly complex and variable across spatial and temporal scales. Yet, despite their numerous implications for the global climate system, the underlying physiological processes and mechanisms at the individual plant scale are still little explored. Using hourly recordings of shrub stem diameter change provided by dendrometers, paired with on-site environmental conditions, enabled us to shed light on these processes. In this way, growth patterns in three widely distributed shrub species were assessed and linked to thermal and hygric conditions. We started our analysis with a close examination of one evergreen species under extreme environmental conditions, followed by a comparison of evergreen and deciduous species, and, finally, a comparative look at growth patterns across local micro-habitats. The results revealed distinct growth strategies, closely linked to species-specific water-use dynamics and cambial rhythms. Within the heterogenous alpine landscape these conditions were mainly attributed to the variation in local micro-habitats, defined by fine-scale topography and consequent variation in snow conditions and exposure. Thus, the overall growth success was mainly controlled by complex seasonal dynamics of soil moisture availability, snow conditions, and associated freeze-thaw cycles. It was therefore in many cases decoupled from governing regional climate signals. At the same time, exceedingly high summer temperatures were limiting shrub growth during the main growing season, resulting in more or less pronounced bimodal growth patterns, indicating potential growth limitation with on-going summer warming. While shrubs are currently able to maximize their growth success through a high level of adaptation to local micro-site conditions, their continued growth under rapidly changing environmental conditions is uncertain. However, our results suggest a high level of heterogeneity across spatial and temporal scales. Thus, broad-scale vegetational shifts can not be explained by a singular driver or uniform response pattern. Instead, fine-scale physiological processes and on-site near-ground environmental conditions have to be incorporated into our understanding of these changes.

11.
Horticulturae ; 9(2):226, 2023.
Article in English | ProQuest Central | ID: covidwho-2268858

ABSTRACT

The nutritional quality and biomass of various sprouts can be enhanced by Zn and red-blue light, especially the Brassica sprouts. However, the combined effects of this two on sprouts are rarely reported. In this study, different Zn concentrations (0, 1.74, 3.48, 10.43 and 17.39 mM) were combined with two ratios of red-blue light-emitting diodes (LEDs) (R: B = 1:2, 1R2B;R: B = 2:1, 2R1B, at 70 μmol m−2 s−1 PPFD, 14 h/10 h, light/dark) to investigate their mutual effects on the growth, mineral elements, and nutritional quality in flowering Chinese cabbage sprouts (FCCS). Fresh weight, dry weight, contents of organic Zn, soluble sugar, vitamin C, total flavonoids, total polyphenol, FRAP (ferric ion-reducing antioxidant power) and DPPH (radical inhibition percentage of 1,1-diphenyl-2-picrylhydrazyl) were significantly increased by Zn supplement (10.43 and 17.39 mM) and 2R1B, while hypocotyl length and moisture content were decreased remarkably by Zn supplement. Total glucosinolates contents in the sprouts increased dramatically under 2R1B compared with 1R2B, while photosynthetic pigments contents decreased. Heat map and principal component analysis showed that 2R1B + 17.39 mM Zn was the optimal treatment for the accumulation of biomass and health-promoting compound in FCCS, suggesting that a suitable combination of light quality and Zn supplement might be beneficial to zinc-biofortified FCCS production.

12.
Environmental Pollution ; Part 1. 316 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2268798

ABSTRACT

The assessment of the health risks of volatile organic compounds (VOCs) emitted from landfills via dispersion model is crucial but also challenging because of remarkable variations in their emissions and meteorological conditions. This study used a probabilistic approach for the assessment of the health risks of typical VOCs by combining artificial neural network models for emission rates and a numerical dispersion model enhanced by probability analysis. A total of 8753 rounds of simulation were performed with distributions of waste compositions and the valid hourly meteorological conditions for 1 year. The concentration distributions and ranges of the typical health-risky VOCs after dispersion were analyzed with 95% probability. The individual and cumulative non-carcinogenic risks of the typical VOCs were acceptable with all values less than 1 in the whole study domain. For individual carcinogenic risks, only ethylbenzene, benzene, chloroform, and 1, 2-dichloroethane at extreme concentrations showed minor or moderate risks with a probability of 0.1%-1% and an impact distance of 650-3000 m at specific directions. The cumulative carcinogenic risks were also acceptable at 95% probability in the whole study domain, but exceeded 1 x 10-6 or even 1 x 10-4 at some extreme conditions, especially within the landfill area. The vertical patterns of the health risks with height initially increased, and then decreased rapidly, and the peak values were observed around the height of the emission source. The dispersion simulation and health risk assessment of the typical health-risky VOCs enhanced by Monte Carlo can accurately reflect their probabilistic dispersion patterns and health risks to surrounding residents from both spatial and temporal dimensions. With this approach, this study can provide important scientific basis and technical support for the health risk assessment and management of landfills.Copyright © 2022 Elsevier Ltd

13.
Road Materials and Pavement Design ; 24(5):1371-1388, 2023.
Article in English | ProQuest Central | ID: covidwho-2260868

ABSTRACT

With the outbreak of the coronavirus (COVID-19) and the spread of this virus, the use of medical equipment, like 3-layerface masks, has increased dramatically. The proliferation of polymer-based face masks has become an environmental problem as ittakes years to completely decompose. The lack of proper management and collection causes environmental pollution. Therefore,considering the polymer base of the face masks and with the aim of improving the asphalt mixtures, in this article, the face mask andits different layers are added to the asphalt mixtures in 4 different weight percentages and in two different sizes, and Marshall test,Resilient modulus, Indirect tensile, Moisture damage, Rutting and Fatigue test were performed on the samples. The experimentalresults show that the addition of these materials to the asphalt mixtures improves the performance of asphalt and 12mm long fibersyielded better results than the results of 8mm long fibers.

14.
Discover Food ; 3(1):2, 2023.
Article in English | ProQuest Central | ID: covidwho-2254853

ABSTRACT

Orange-fleshed sweet potato (OFSP) and pumpkin fruit are underutilized crops with great potential for the production of high-quality bread with health-enhancing properties. However, the incorporation of nonconventional flour in bread formula may influence the dough and bread quality properties. This study investigated the effect of partial substitution of wheat flour with OFSP (10–50%) and pumpkin flour (10–40%), baking temperature (150–200 °C) and baking time (15–25 min) on the quality properties of the composite dough and bread using response surface methodology (RSM). Dough rheological, bread physical and textural properties were analyzed, modelled and optimized using RSM. Satisfactory regression models were developed for the dough and bread quality attributes (R2 > 0.98). The dough development time, crust redness, hardness, and chewiness values increased while optimum water absorption of dough, specific volume, lightness, springiness, and resilience of bread decreased significantly (p < 0.05) with increasing incorporation of OFSP and pumpkin flour in the bread formula. Additionally, the specific volume, crust redness, crumb hardness, and chewiness of the composite bread increased significantly (p < 0.05) with increasing baking temperature from 150 to 180 °C but reduced at higher baking temperatures (≥ 190 °C). The staling rate declined with increased OFSP and pumpkin flour whereas increasing the baking temperature and time increased the bread staling rate. The optimized formula for the composite bread was 78.5% wheat flour, 11.5% OFSP flour, 10.0% pumpkin flour, and baking conditions of 160 °C for 20 min. The result of the study has potential applications in the bakery industry for the development of functional bread.

15.
British Journal of Dermatology ; 185(Supplement 1):112-113, 2021.
Article in English | EMBASE | ID: covidwho-2251013

ABSTRACT

Silver has been in medicine for hundreds of years and has proven antimicrobial properties. It was widely used until the Second World War, when antibiotics emerged. Silver nitrate (SN) sticks (75% silver nitrate and 25% potassium nitrate) are currently employed as a topical haemostatic agent for various cutaneous surgical procedures. In the initial phase of the COVID-19 pandemic, faced with a limited supply of personal protective equipment, we used SN stick haemostasis for several skin surgical procedures (including excisions). COVID-19-related guidance from the Trust recommended the avoidance of electrocautery owing to the generation of surgical plume;hence, SN stick haemostasis seemed a pragmatic option. Four female patients with a mean age of 67 years (range 48-75) presented with swelling, erythema and pain at the surgical site within a week of the procedure. Three had ellipse excisions for suspected melanoma and squamous cell carcinomas, and one had a shave excision for possible seborrhoeic keratosis. Postsurgical wound infection was suspected, but repeated microbiological swabs did not grow any pathogens. All patients failed to respond to broad-spectrum oral antibiotics, even after two courses. The inflammatory changes took up to 4 weeks to settle, with topical corticosteroids used for wound healing. On contact with moisture, SN sticks deliver free silver ions that form an eschar as they bind to the tissue and occlude vessels. The longer the tip contacts the tissue, the greater the degree of the resultant caustic action. It is widely used in clinical practice, especially wound care (overgranulation, epibole and delayed healing). A 2020 review found an increased incidence of postoperative pain along with pigmentary changes in surgical wounds treated with SN sticks vs. aluminium chloride hexahydrate and ferric subsulfate. In skin surgery, SN is used to cauterize superficial wounds after curettage and shave excision. It does not generate aerosol and, in a pandemic setting, this particular feature can be valuable. However, the potential to cause aseptic skin inflammation that mimics postoperative infection is noteworthy. There are no evidence-based guidelines for its use in dermatology. We believe that the SN is an effective haemostatic agent but can induce significant tissue inflammation in some patients, particularly if it is used in excisions when the cauterized tissue is closed. If SN-induced haemostasis for excision was to be adopted in clinical practice, our experience suggests that larger studies and guidelines are recommended.

16.
Canadian Journal of Plant Pathology ; 43(Suppl. 1):S179-S182, 2021.
Article in English | CAB Abstracts | ID: covidwho-2263295

ABSTRACT

Various kinds of field crops growing on two commercial farms in the Whitehorse area of the southern Yukon Territory were surveyed for diseases in summer 2020 by staff of the Agriculture Branch of the Government of Yukon. They included barley, wheat, canola, beets, broccoli, cabbage, carrots, potatoes and turnips. Fields were visited one or more times during July and August. The incidence and severity of diseases were visually assessed on a crop-by-crop basis and samples were collected for laboratory analysis of the pathogens present, if any. Both infectious and non-infectious diseases were present on most crops. The infectious diseases were caused by various species of plant pathogenic bacteria and fungi that were common on these crops growing in other areas of Canada. INTRODUCTION AND METHODS: The 2020 field crop disease survey is believed to be the first organized study of its kind on agricultural crops in the Territory. In his book, "An Annotated Index of Plant Diseases in Canada . . . ", I.L. Conners lists over 300 records of plant diseases on trees, shrubs, herbs and grasses in the Yukon that were published by individuals who were surveying forests and native vegetation mainly for federal government departments, universities and other agencies (Conners 1967). The objectives of the 2020 survey were: (1) to determine the kinds and levels of diseases on selected Yukon crops, (2) to identify the major pathogen species attacking Yukon crops, and (3) to use the results to plan future surveillance activities aimed at helping producers to improve their current disease management programs. All of the fields included in the 2020 survey were situated on two commercial farms, which were designated as Farm #1 and #2, in the Whitehorse area in the southern Yukon (Fig. 1). The crops surveyed included cereals (barley and wheat), oilseeds (canola) and vegetables (beets, broccoli, cabbage, carrots, potatoes and turnips). Fields were visited one or more times in the mid- to late growing season (July/August) at a time when damage from diseases was most noticeable. Symptoms were visually assessed on a crop-by-crop basis by determining their incidence and severity. Incidence was represented by the percentage of plants, leaves, heads, kernels, etc., damaged in the target crop, while severity was estimated to be the proportion of the leaf, fruit, head, root/canopy area, etc., affected by a specific disease as follows: Proportion of the canopy affected based on a 0-4 rating scale, where: 0 = no disease symptoms, 1 = 1-10% of the crop canopy showing symptoms;2 = 11-25% showing symptoms, 3 = 26- 50% showing symptoms, and 4 = > 50% showing symptoms. Photographs of affected plants were taken and sent to plant pathologists across Western Canada for their opinions on causation. Where possible, representative samples of plants with disease symptoms were packaged and sent to the Alberta Plant Health Lab (APHL) in Edmonton, AB for diagnostic analyses. Background information, such as the general cultural practices and cropping history, was obtained from the producers wherever possible. GPS coordinates were obtained for each field to enable future mapping Cereals: Individual fields of barley (11 ha) and wheat (30 ha) located at Farm #1 were surveyed. The barley was a two-row forage cultivar 'CDC Maverick', while the wheat was an unspecified cultivar of Canada Prairie Spring (CPS) Wheat. Plant samples were taken along a W-shaped transect for a total of five sampling points for the barley field (< 20 ha) and ten sampling points for the wheat field (> 20 ha). The first visit, which occurred on July 30, involved visual inspection and destructive sampling wherein plants were collected and removed from the field for a detailed disease assessment at a lab space in Whitehorse. There, the roots were rinsed off and the plants were examined for disease symptoms. The second visit to these fields, which occurred on August 27, only involved visual examination of the standing crop. Oilseeds: A single 40 ha field of Polish canola (cv. 'Synergy') was examined o

17.
Int J Environ Res Public Health ; 20(5)2023 02 24.
Article in English | MEDLINE | ID: covidwho-2283998

ABSTRACT

This study examined whether the moisture control innovation (tongue and cheek retractors and saliva contamination (SS-suction)) used without dental assistance could improve the quality of dental sealant in rural Thai school children compared to a standard treatment, i.e., high power suction with dental assistance. A single blind, cluster randomized controlled trial was conducted. Participants were 15 dental nurses working in sub-district health promoting hospitals and 482 children. All dental nurses attended workshops of SS-suction and revised dental sealant procedures. Children with sound lower first permanent molar teeth were simple-randomly assigned to either an intervention or control group. The children in the intervention group were sealed with SS-suction, and the children in the control group were sealed with high power suction and dental assistance. There were 244 children in the intervention group and 238 children in the control group. Dental nurses' satisfaction on SS-suction was record by visual analogue scale (VAS) for each tooth during treatment. After 15-18 months, caries on sealed surfaces were examined. The results showed that the median satisfaction score of SS-suction was 9 out of 10, and 17-18% children experienced uncomfortable sensation during insertion or removal. The uncomfortable feeling disappeared once the suction was in place. Caries on sealed surfaces did not differ significantly between the intervention and control groups. Caries on the occlusal surface was present in 26.7% and 27.5%, and caries on the buccal surface was present in 35.2% and 36.4% of cases in the intervention and control groups, respectively. In conclusion, dental nurses were satisfied with SS-suction in terms of both function and safety. The effectiveness of SS-suction was compatible with the standard procedure after 15-18 months.


Subject(s)
Dental Caries , Pit and Fissure Sealants , Child , Humans , Single-Blind Method , Suction , Molar , Thailand
18.
Fibres & Textiles in Eastern Europe ; 30(3):102-110, 2022.
Article in English | Web of Science | ID: covidwho-2241932

ABSTRACT

As the spread of Covid-19 has created a fatal threat to human survival, a comfortable and virus-deactivated functional face mask is extremely necessary. Herein, an appropriate thermally comfortable and highly breathable as well as virus-protecting functional knit fabric face mask was developed that consisted of multichannel PE Coolmax((R)) yarn with cotton yarn. Due to the multichannel structure (four and six channels) of PE Coolmax((R)) yarn with cotton yarn blended fabric, the fiber showed good filtration efficiency, air permeability, water vapour permeability and moisture management properties. In addition, the thermal conductivity and absorptive properties of the blended fabric based on the properties of PE Coolmax((R)) yarn with cotton yarn make the face mask more comfortable for the user.

19.
J Cosmet Dermatol ; 2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2239804

ABSTRACT

BACKGROUND: Different strategies for hand skin hygiene have been used to prevent the spread of SARS-CoV-2. However, frequent hand sanitization has been associated with skin damage. The present study aimed to evaluate hand hygiene habits during the COVID-19 pandemic and the effect of the repetitive use of soap or alcohol-based products on skin characteristics. METHODS: We conducted a survey regards hand hygiene habits acquired during the COVID-19 pandemic. Also, we performed cutometry in a cohort of individuals who cleansed their volar forearms every 30 min, during 4 h, using soap or alcohol-based products. RESULTS: We received 138 responses from people with medium-high educational level who reported a 2.5-time increase in the frequency of hand cleansing (p < 0.0001) that resulted in skin damage. An in vivo analysis of skin moisture and elasticity was also performed among 19 health workers and students. In general, skin moisture decreased with every cleansing, mainly after 2 h of washing with soap (p < 0.01), while skin elasticity only reduced after 4 h of treatment (p < 0.05). Alcohol-based solution or alcohol-based gel (70% ethanol, both) did not affect skin moisture or elasticity during testing. CONCLUSION: It is known that the excessive use of soap or alcohol-based products causes dermatological issues. The present study demonstrates that non-medicated soap significantly affects skin moisture and elasticity, probably because the soap removes the hydrolipidic protective barrier, favoring transepidermal water loss, where the lack of the appropriate stratum corneum hydration also affects skin elasticity, mainly associated with changes in epidermal structure.

20.
Intensive Crit Care Nurs ; 74: 103335, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2232755

ABSTRACT

BACKGROUND: The application of Continuous Positive Airway Pressure (CPAP) with a helmet is increasing around the world, both inside and outside of the intensive care unit. Current published literature focus's on indications, contraindications and efficiency of Helmet CPAP in differing clinical scenarios. Few reports, summarising the available knowledge concerning technical characteristics and nursing interventions to improve patient's comfort, are available. AIM: To identify the crucial technical aspects in managing patients undergoing Helmet-CPAP, and what nursing interventions may increase comfort. METHODS: A narrative literature review of primary research published 2002 onwards. The search strategy comprised an electronic search of three bibliographic databases (Pubmed, Embase, CINAHL). RESULTS: Twenty-three studies met the inclusion criteria and were included in the review. Research primarily originated from Italy. Nine key themes emerged from the review: gas flow management, noise reduction, impact of gas flow and HME filters on delivered FiO2, filtration of exhaled gas / environmental protection, PEEP monitoring, airway pressure monitoring, active humidification of gas flow, helmet fixation and tips to implement awake prone position during Helmet-CPAP. CONCLUSIONS: A Helmet-CPAP check-list has been made of nine key interventions based on the available evidence regarding system set up, monitoring and management. Implementation of this check-list may help nurses and physicians to increase the comfort of patients treated with Helmet CPAP and enhance their compliance with long-term treatment.


Subject(s)
Continuous Positive Airway Pressure , Intensive Care Units , Humans , Italy , Monitoring, Physiologic , Noise
SELECTION OF CITATIONS
SEARCH DETAIL